Properties

Label 11.12.9.1
Base \(\Q_{11}\)
Degree \(12\)
e \(4\)
f \(3\)
c \(9\)
Galois group $D_4 \times C_3$ (as 12T14)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} + 8 x^{10} + 36 x^{9} + 57 x^{8} + 216 x^{7} + 342 x^{6} - 4320 x^{5} + 2675 x^{4} + 2412 x^{3} + 26122 x^{2} + 17316 x + 16164\) Copy content Toggle raw display

Invariants

Base field: $\Q_{11}$
Degree $d$: $12$
Ramification exponent $e$: $4$
Residue field degree $f$: $3$
Discriminant exponent $c$: $9$
Discriminant root field: $\Q_{11}(\sqrt{11})$
Root number: $i$
$\card{ \Aut(K/\Q_{ 11 }) }$: $6$
This field is not Galois over $\Q_{11}.$
Visible slopes:None

Intermediate fields

$\Q_{11}(\sqrt{11\cdot 2})$, 11.3.0.1, 11.4.3.1, 11.6.3.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:11.3.0.1 $\cong \Q_{11}(t)$ where $t$ is a root of \( x^{3} + 2 x + 9 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{4} + 11 \) $\ \in\Q_{11}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{3} + 4z^{2} + 6z + 4$
Associated inertia:$2$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois group:$C_3\times D_4$ (as 12T14)
Inertia group:Intransitive group isomorphic to $C_4$
Wild inertia group:$C_1$
Unramified degree:$6$
Tame degree:$4$
Wild slopes:None
Galois mean slope:$3/4$
Galois splitting model: $x^{12} - x^{11} - 7 x^{10} + 10 x^{9} + 77 x^{8} - 8 x^{7} - 171 x^{6} + 22 x^{5} + 476 x^{4} - 192 x^{3} - 112 x^{2} + 64 x + 64$ Copy content Toggle raw display