Properties

Label 11.1.15.14a1.4
Base \(\Q_{11}\)
Degree \(15\)
e \(15\)
f \(1\)
c \(14\)
Galois group $S_3 \times C_5$ (as 15T4)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{15} + 55\) Copy content Toggle raw display

Invariants

Base field: $\Q_{11}$
Degree $d$: $15$
Ramification index $e$: $15$
Residue field degree $f$: $1$
Discriminant exponent $c$: $14$
Discriminant root field: $\Q_{11}(\sqrt{2})$
Root number: $1$
$\Aut(K/\Q_{11})$: $C_5$
This field is not Galois over $\Q_{11}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$10 = (11 - 1)$

Intermediate fields

11.1.3.2a1.1, 11.1.5.4a1.4

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{11}$
Relative Eisenstein polynomial: \( x^{15} + 55 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{14} + 4 z^{13} + 6 z^{12} + 4 z^{11} + z^{10} + z^{3} + 4 z^{2} + 6 z + 4$
Associated inertia:$2$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $30$
Galois group: $C_5\times S_3$ (as 15T4)
Inertia group: $C_{15}$ (as 15T1)
Wild inertia group: $C_1$
Galois unramified degree: $2$
Galois tame degree: $15$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[]$
Galois mean slope: $0.9333333333333333$
Galois splitting model:not computed