Defining polynomial
\(x^{15} + 55\)
|
Invariants
Base field: | $\Q_{11}$ |
Degree $d$: | $15$ |
Ramification index $e$: | $15$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $14$ |
Discriminant root field: | $\Q_{11}(\sqrt{2})$ |
Root number: | $1$ |
$\Aut(K/\Q_{11})$: | $C_5$ |
This field is not Galois over $\Q_{11}.$ | |
Visible Artin slopes: | $[\ ]$ |
Visible Swan slopes: | $[]$ |
Means: | $\langle\ \rangle$ |
Rams: | $(\ )$ |
Jump set: | undefined |
Roots of unity: | $10 = (11 - 1)$ |
Intermediate fields
11.1.3.2a1.1, 11.1.5.4a1.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | $\Q_{11}$ |
Relative Eisenstein polynomial: |
\( x^{15} + 55 \)
|
Ramification polygon
Residual polynomials: | $z^{14} + 4 z^{13} + 6 z^{12} + 4 z^{11} + z^{10} + z^{3} + 4 z^{2} + 6 z + 4$ |
Associated inertia: | $2$ |
Indices of inseparability: | $[0]$ |
Invariants of the Galois closure
Galois degree: | $30$ |
Galois group: | $C_5\times S_3$ (as 15T4) |
Inertia group: | $C_{15}$ (as 15T1) |
Wild inertia group: | $C_1$ |
Galois unramified degree: | $2$ |
Galois tame degree: | $15$ |
Galois Artin slopes: | $[\ ]$ |
Galois Swan slopes: | $[]$ |
Galois mean slope: | $0.9333333333333333$ |
Galois splitting model: | not computed |