Properties

Label 107.2.0.1
Base \(\Q_{107}\)
Degree \(2\)
e \(1\)
f \(2\)
c \(0\)
Galois group $C_2$ (as 2T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{2} + 103 x + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{107}$
Degree $d$: $2$
Ramification exponent $e$: $1$
Residue field degree $f$: $2$
Discriminant exponent $c$: $0$
Discriminant root field: $\Q_{107}(\sqrt{2})$
Root number: $1$
$\card{ \Gal(K/\Q_{ 107 }) }$: $2$
This field is Galois and abelian over $\Q_{107}.$
Visible slopes:None

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 107 }$.

Unramified/totally ramified tower

Unramified subfield:$\Q_{107}(\sqrt{2})$ $\cong \Q_{107}(t)$ where $t$ is a root of \( x^{2} + 103 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x - 107 \) $\ \in\Q_{107}(t)[x]$ Copy content Toggle raw display

Ramification polygon

The ramification polygon is trivial for unramified extensions.

Invariants of the Galois closure

Galois group:$C_2$ (as 2T1)
Inertia group:trivial
Wild inertia group:$C_1$
Unramified degree:$2$
Tame degree:$1$
Wild slopes:None
Galois mean slope:$0$
Galois splitting model:$x^{2} - x + 5$