The weight $w$ of the Sato-Tate group $G$ of a motive $X$ is determined by the cohomology group $H^w(X,\mathbb{Q}_\ell)$ used to define $G$. For a prime of norm $q$, the characteristic polynomial of Frobenius is a Weil $q^w$-polynomial.
Authors:
Knowl status:
- Review status: reviewed
- Last edited by Kiran S. Kedlaya on 2018-06-20 04:06:06
Referred to by:
History:
(expand/hide all)
- rcs.cande.st_group
- rcs.rigor.st_group
- st_group.definition
- st_group.invariants
- st_group.label
- st_group.summary
- lmfdb/sato_tate_groups/templates/st_browse.html (line 10)
- lmfdb/sato_tate_groups/templates/st_browse.html (line 50)
- lmfdb/sato_tate_groups/templates/st_display.html (line 6)
- lmfdb/sato_tate_groups/templates/st_results.html (line 10)
- lmfdb/sato_tate_groups/templates/st_results.html (line 57)
- 2018-06-20 04:06:06 by Kiran S. Kedlaya (Reviewed)