The weight $w$ of the Sato-Tate group $G$ of a motive $X$ is determined by the cohomology group $H^w(X,\mathbb{Q}_\ell)$ used to define $G$. For a prime of norm $q$, the characteristic polynomial of Frobenius is a Weil $q^w$-polynomial.
Authors:
Knowl status:
- Review status: reviewed
- Last edited by Andrew Sutherland on 2021-01-01 15:34:42
Referred to by:
History:
(expand/hide all)
- rcs.cande.st_group
- rcs.rigor.st_group
- rcs.source.st_group
- st_group.ambient
- st_group.definition
- st_group.fourth_trace_moment
- st_group.generators
- st_group.hodge_circle
- st_group.invariants
- st_group.label
- st_group.moment_simplex
- st_group.name
- st_group.subsupgroups
- st_group.summary
- st_group.trace_moments
- lmfdb/sato_tate_groups/main.py (line 400)
- lmfdb/sato_tate_groups/main.py (line 602)
- lmfdb/sato_tate_groups/main.py (line 1068)
- lmfdb/sato_tate_groups/main.py (line 1222)
- lmfdb/sato_tate_groups/templates/st_browse.html (line 12)
- lmfdb/sato_tate_groups/templates/st_display.html (line 6)
- 2021-01-01 15:34:42 by Andrew Sutherland (Reviewed)
- 2018-06-20 04:06:06 by Kiran S. Kedlaya (Reviewed)