The identity component of a Sato-Tate group $G$ is the connected component $G^0$ of the identity element. As a compact Lie group, the identity component $G^0$ is a normal subgroup of finite index. The quotient $G/G^0$ is the component group of $G$.
Authors:
Knowl status:
- Review status: reviewed
- Last edited by Andrew Sutherland on 2021-01-01 15:24:06
Referred to by:
History:
(expand/hide all)
- st_group.component_group
- st_group.components
- st_group.connected
- st_group.label
- st_group.subgroups
- st_group.subsupgroups
- st_group.supgroups
- lmfdb/sato_tate_groups/main.py (line 404)
- lmfdb/sato_tate_groups/main.py (line 605)
- lmfdb/sato_tate_groups/main.py (line 1088)
- lmfdb/sato_tate_groups/main.py (line 1172)
- lmfdb/sato_tate_groups/main.py (line 1200)
- lmfdb/sato_tate_groups/main.py (line 1215)
- lmfdb/sato_tate_groups/templates/st_display.html (lines 14-16)
- 2021-01-01 15:24:06 by Andrew Sutherland (Reviewed)
- 2018-06-20 04:08:45 by Kiran S. Kedlaya (Reviewed)