The identity component of a Sato-Tate group $G$ is the connected component $G^0$ of the identity element. As a compact Lie group, the identity component $G^0$ is a normal subgroup of finite index. The quotient $G/G^0$ is the component group of $G$.
Authors:
Knowl status:
- Review status: reviewed
- Last edited by Kiran S. Kedlaya on 2018-06-20 04:08:45
Referred to by:
History:
(expand/hide all)
- st_group.component_group
- st_group.components
- lmfdb/sato_tate_groups/templates/st_browse.html (line 22)
- lmfdb/sato_tate_groups/templates/st_browse.html (line 68)
- lmfdb/sato_tate_groups/templates/st_display.html (lines 14-16)
- lmfdb/sato_tate_groups/templates/st_results.html (line 13)
- lmfdb/sato_tate_groups/templates/st_results.html (line 60)
- 2018-06-20 04:08:45 by Kiran S. Kedlaya (Reviewed)