An **integral domain** is a commutative ring with one $R$ such that $1_R\neq 0_R$ and $R$ contains no zero divisors.

**Authors:**

**Knowl status:**

- Review status: reviewed
- Last edited by John Jones on 2018-08-06 02:35:51

**Referred to by:**

**History:**(expand/hide all)

- 2018-08-06 02:35:51 by John Jones (Reviewed)