show · ring.field_of_fractions all knowls · up · search:

If $R$ is an integral domain, then its field of fractions $F$ is the smallest field containing $R$.

It can be constructed by mimicking the set of fractions $a/b$ where $a,b\in R$ with $b\neq 0$ following the usual rules for fraction arithmetic. It is unique, up to unique isomorphism.

Knowl status:
  • Review status: reviewed
  • Last edited by John Jones on 2018-08-06 15:09:37
Referred to by:
History: (expand/hide all)