The index of a modular curve $X_H$ is the index of the open subgroup $H\leq \GL_2(\widehat\Z)$. The degree of the canonical morphism $j \colon X_H\to X(1)\simeq \mathbb P^1$ equals the index when $-1 \in H$, and equals half the index if $-1 \notin H$.
Authors:
Knowl status:
- Review status: beta
- Last edited by Bjorn Poonen on 2022-03-24 18:13:58
Referred to by:
History:
(expand/hide all)
- columns.gps_gl2zhat.index
- columns.gps_gl2zhat_fine.index
- modcurve.gassmann_class
- modcurve.invariants
- modcurve.psl2index
- portrait.modcurve
- lmfdb/homepage/sidebar.yaml (line 99)
- lmfdb/modular_curves/isog_class.py (line 113)
- lmfdb/modular_curves/main.py (line 230)
- lmfdb/modular_curves/main.py (line 332)
- lmfdb/modular_curves/main.py (line 775)
- lmfdb/modular_curves/templates/modcurve.html (line 21)
- lmfdb/modular_curves/templates/modcurve_isoclass.html (line 103)
- 2022-03-24 18:13:58 by Bjorn Poonen
- 2022-03-24 10:35:22 by John Voight
- 2022-03-20 21:47:56 by Andrew Sutherland
- 2022-03-20 16:38:29 by Andrew Sutherland