For each open subgroup $H \le \GL_2(\widehat\Z)$, there is a modular curve $X_H$, defined as a quotient of the big modular curve $X(N)^{\text{big}}$, where $N$ is the level of $H$. More precisely, $H$ is the inverse image of a subgroup $H_N \le \GL_2(\Z/N\Z)$, which acts on $X(N)^{\text{big}}$ over $\Q$, and $X_H$ is the quotient curve $H_N \backslash X(N)^{\text{big}}$, also defined over $\Q$.
Like $X(N)^{\text{big}}$, the curve $X_H$ is smooth, projective, and integral, but it may have several geometric components and hence not be geometrically integral.
Rational points: If $E$ is an elliptic curve over $\Q$, then each group isomorphism $\beta \colon E[N] \stackrel{\sim}\to (\Z/N\Z)^2$ such that the image of the induced composition $\Gal_\Q \to \Aut E[N] \stackrel{\sim}\to \Aut (\Z/N\Z)^2 = \GL_2(\Z/N\Z)$ is contained in $H_N$ gives a rational point of $X_H$, depending only on the orbit $H_N \beta$. (Given $E$, if we, less canonically, choose an arbitrary basis of $E[N]$ to define $\rho \colon \Gal_\Q \to \GL_2(\Z/N\Z)$, then $\beta$ exists if and only if the image of $\rho$ is contained in a conjugate of $H_N$.) If $-1 \notin H_N$, then conversely, each rational point on $X_H$, excluding the finite set of cusps and possibly finitely many points with $j=0$ or $j=1728$, arises from a unique pair $(E,H_N g)$ up to isomorphism. For fields $k \supset \Q$, the $k$-rational points of $X_H$ can be understood similarly.
Complex points: The congruence subgroup $\Gamma_H:= H\cap \SL_2(\Z)$ acts on the completed upper half-plane $\overline{\mathfrak{h}}$; one connected component of $X_H(\C)$ is biholomorphic to the quotient $\Gamma_H \backslash \overline{\mathfrak{h}}$.
The curve $X_H$ can alternatively be constructed as the coarse moduli space of the stack $\mathcal M_H$ over $\Q$ defined in Deligne-Rapoport [MR:0337993, 10.1007/978-3-540-37855-6_4]. Either construction of $X_H$ can be carried out over any field of characteristic not dividing $N$, or even over $\Z[1/N]$.
- Review status: reviewed
- Last edited by Bjorn Poonen on 2022-03-25 10:14:25
- ag.modcurve.xnsp
- ec.galois_rep_adelic_image
- ec.q.256.b1.top
- gl2.genus
- modcurve.canonical_field
- modcurve.cm_discriminants
- modcurve.components
- modcurve.contains_negative_one
- modcurve.cusp_orbits
- modcurve.decomposition
- modcurve.elliptic_points
- modcurve.embedded_model
- modcurve.genus
- modcurve.genus_minus_rank
- modcurve.gonality
- modcurve.index
- modcurve.invariants
- modcurve.j_invariant_map
- modcurve.label
- modcurve.level
- modcurve.modular_cover
- modcurve.newform_level
- modcurve.psl2index
- modcurve.quadratic_refinements
- modcurve.rank
- modcurve.rational_points
- modcurve.relative_index
- modcurve.simple
- modcurve.sl2level
- modcurve.standard
- modcurve.x0
- modcurve.x1
- modcurve.x1mn
- modcurve.xfull
- modcurve.xn
- modcurve.xpm1
- modcurve.xpm1mn
- modcurve.xs4
- modcurve.xsp
- modcurve.xsp_plus
- portrait.modcurve
- 2022-03-25 10:14:25 by Bjorn Poonen (Reviewed)
- 2022-03-25 00:42:43 by Bjorn Poonen
- 2022-03-24 23:57:00 by Bjorn Poonen
- 2022-03-24 20:02:37 by Bjorn Poonen
- 2022-03-24 15:54:56 by Bjorn Poonen
- 2022-03-23 13:27:07 by Bjorn Poonen
- 2022-03-22 00:59:58 by Bjorn Poonen
- 2022-03-21 12:29:56 by John Voight
- 2022-03-20 17:29:34 by Andrew Sutherland
- 2022-03-20 16:21:17 by Andrew Sutherland
- 2022-03-20 16:05:25 by Andrew Sutherland
- 2022-03-20 16:03:11 by Andrew Sutherland
- 2022-03-20 16:02:12 by Andrew Sutherland