A Siegel modular form on an arithmetic subgroup of $\mathrm{GSp}(2g)$ is said to have degree $g$ (their L-functions then have degree $2g$). Under the paramodular conjecture, genus 2 curves $C/\Q$ with $\mathrm{End}(\mathrm{Jac}(C))=\Z$ correspond to weight 2 Siegel modular forms of degree $g=2$.
Authors:
Knowl status:
- Review status: beta
- Last edited by John Voight on 2018-06-28 00:18:20
Referred to by:
History:
(expand/hide all)
- mf.siegel.family.gamma0_2
- mf.siegel.family.gamma0_3
- mf.siegel.family.gamma0_3_psi_3
- mf.siegel.family.gamma0_4
- mf.siegel.family.gamma0_4_psi_4
- mf.siegel.family.sp4z
- mf.siegel.family.sp4z_2
- mf.siegel.family.sp6z
- mf.siegel.family.sp8z
- lmfdb/siegel_modular_forms/templates/ModularForm_GSp4_Q_dimensions.html (line 5)
- lmfdb/siegel_modular_forms/templates/ModularForm_GSp4_Q_family.html (line 30)