Let $g\ge 2$ be an integer, let $\rho\colon \GL(g,\mathbb{C})\to \GL(V)$ be a finite-dimensional complex representation, and let $\Gamma \leq \GSp(2g,\Q)$ be an arithmetic subgroup.
A holomorphic map $f$ on the
Siegel upper half space $\mathcal{H}_g$
taking values in $V$ is called a Siegel modular form of weight $\rho$ on $\Gamma$ if
\[
f((a\tau+b)(c\tau+d)^{-1})=\rho(c\tau+d)f(\tau)
\]
for all $\begin{pmatrix} a&b\\c&d\end{pmatrix}\in \Gamma$ (with $a,b,c,d \in \mathrm{M}(g,\mathbb{Q})$) and all $\tau\in\mathcal{H}_g$.
The arithmetic subgroups of $\GSp(2g,\Q)$ that we focus on are the following ones:
- integral symplectic group: $\Sp(2g,\Z)$
- Congruence subgroups of $\Sp(2g,\Z)$
- paramodular group: $\Gamma^{\mathrm{para}}(d)\subset \Sp(2g,\Q)$
Note in the case of (classical) modular forms, a holomorphicity condition at all the cusps of $\Gamma$ is required in the definition. Due to the so-called Koecher principle such a condition is superfluous for Siegel modular form of degree $g>1$.
For each fixed choice of $\rho$ and $\Gamma$, the set of modular forms of weight $\rho$ on $\Gamma$ is a finite-dimensional complex-vector space denoted by $M_{\rho}(\Gamma)$. Moreover if the representation $\rho$ is the direct sum of two representations $\rho=\rho_1\oplus \rho_2$ then the space $M_{\rho}(\Gamma)$ is isomorphic to $M_{\rho_1}(\Gamma)\oplus M_{\rho_2}(\Gamma)$ and we can restrict ourselves to irreducible representations of $\GL(g,\C)$.
If the highest weight of the representation $\rho$ is $(k,\ldots,k)$ i.e. $\rho=\det^{\otimes k}$ (note that $V$ is one-dimensional in this case) then the previous functional equation takes the form \[ f((a\tau+b)(c\tau+d)^{-1})=\det(c\tau+d)^kf(\tau) \] and $f$ is called a scalar-valued Siegel modular form. The space of such forms is simply denoted by $M_k(\Gamma)$. When $\dim(V)>1$, we usually talk about vector-valued Siegel modular forms.
- Review status: beta
- Last edited by Fabien Cléry on 2023-11-30 17:44:08
- lattice.history
- mf
- mf.siegel.cusp_form
- mf.siegel.degree
- mf.siegel.family.gamma0_2
- mf.siegel.family.gamma0_3
- mf.siegel.family.gamma0_3_psi_3
- mf.siegel.family.gamma0_4
- mf.siegel.family.gamma0_4_psi_4
- mf.siegel.family.sp4z
- mf.siegel.family.sp6z
- mf.siegel.hecke_operator
- mf.siegel.level
- mf.siegel.lift.ikeda
- mf.siegel.lift.maass
- mf.siegel.lift.miyawaki
- mf.siegel.newform
- mf.siegel.q-expansion
- mf.siegel.vector_valued_degree_two
- mf.siegel.weight
- mf.siegel.weight_k_j
- rcs.rigor.mf.siegel
- lmfdb/lfunctions/Lfunction.py (line 1106)
- lmfdb/siegel_modular_forms/templates/ModularForm_GSp4_Q_dimensions.html (line 5)
- lmfdb/siegel_modular_forms/templates/ModularForm_GSp4_Q_family.html (line 30)
- lmfdb/siegel_modular_forms/templates/ModularForm_GSp4_Q_index.html (line 6)
- lmfdb/siegel_modular_forms/templates/ModularForm_GSp4_Q_index.html (line 14)
- 2023-11-30 17:44:08 by Fabien Cléry
- 2023-11-18 14:06:17 by John Voight
- 2023-11-18 14:06:11 by John Voight
- 2023-11-18 14:04:57 by John Voight
- 2023-11-18 14:04:44 by John Voight
- 2023-11-18 14:04:30 by John Voight
- 2023-11-18 14:04:09 by John Voight
- 2023-11-18 14:03:05 by John Voight
- 2023-11-18 14:02:39 by John Voight
- 2023-11-18 14:02:16 by John Voight
- 2023-11-18 14:01:21 by John Voight
- 2023-11-17 16:10:54 by Shiva Chidambaram
- 2023-11-17 14:46:49 by Fabien Cléry
- 2023-11-17 14:44:45 by Fabien Cléry
- 2021-05-07 16:38:25 by Andrew Sutherland
- 2021-05-07 16:34:58 by Andrew Sutherland
- 2021-05-06 16:23:40 by Fabien Cléry
- 2021-05-06 16:11:44 by Fabien Cléry
- 2021-05-06 15:43:18 by Fabien Cléry
- 2021-05-06 15:27:11 by Fabien Cléry
- 2021-05-06 15:11:46 by Fabien Cléry
- 2021-05-06 14:53:35 by Fabien Cléry
- 2021-05-06 14:49:26 by Fabien Cléry
- 2021-05-06 12:21:49 by Fabien Cléry
- 2021-05-06 10:36:26 by Fabien Cléry
- 2021-05-06 10:33:20 by Fabien Cléry
- 2021-05-06 10:32:25 by Fabien Cléry
- 2021-05-06 10:31:24 by Fabien Cléry
- 2021-05-06 10:24:29 by Fabien Cléry
- 2021-05-06 10:21:48 by Fabien Cléry
- 2021-05-06 10:06:08 by Fabien Cléry
- 2021-05-06 10:05:22 by Fabien Cléry
- 2021-05-06 09:52:25 by Fabien Cléry
- 2021-05-06 09:50:54 by Fabien Cléry
- 2021-05-06 09:49:29 by Fabien Cléry
- 2021-05-06 09:48:52 by Fabien Cléry
- 2021-05-06 09:48:10 by Fabien Cléry
- 2021-05-06 09:47:09 by Fabien Cléry
- 2021-05-06 09:46:33 by Fabien Cléry
- 2021-05-06 09:42:06 by Fabien Cléry
- 2021-05-06 09:41:34 by Fabien Cléry
- 2021-05-06 09:39:55 by Fabien Cléry
- 2021-05-02 16:09:38 by Fabien Cléry
- 2021-04-15 13:01:52 by Fabien Cléry
- 2021-04-15 12:22:52 by Fabien Cléry
- 2018-12-13 14:24:42 by Alex J. Best