A (scalar valued) Siegel modular form $F$ of degree $g$ (or genus $g$) is a holomorphic function on the Siegel upper half space $\Bbb{H}_g$ that satisfies a transformation property under arithmetic subgroups of $\GSp(2g)$ such as the following.
- symplectic group: $\Sp(2g,\Z)$
- Hecke subgroup: $\Gamma_0(N)\subset \Sp(2g,\Z)$
- paramodular group: $K(N)\subset \Sp(4,\Q)$
A Siegel modular form of weight $k\in\Z$ and degree $g$ with respect to a subgroup $\Gamma\subset \GSp(2g,\Q)$ is a function $F:\Bbb{H}_g\to\C$ such that for any $\gamma=\begin{pmatrix} A&B\\C&D\end{pmatrix}$ we have $F((AZ+B)(CZ+D)^{-1})=\left(\det(C Z+D)\right)^{k}F(Z)$. If $g=1$, one must also impose the following condition: there exists $\epsilon>0$ such that $$|F(x+iy)|\ll y^\epsilon\quad\text{for }y\geq 1.$$
More generally Siegel modular forms can have half-integral weights, and vector valued Siegel modular forms have representations for their weights.
- Review status: beta
- Last edited by Alex J. Best on 2018-12-13 14:24:42
- lattice.history
- mf
- mf.siegel.degree
- mf.siegel.family.gamma0_2
- mf.siegel.family.gamma0_3
- mf.siegel.family.gamma0_3_psi_3
- mf.siegel.family.gamma0_4
- mf.siegel.family.gamma0_4_psi_4
- mf.siegel.family.sp4z
- mf.siegel.family.sp6z
- mf.siegel.lift.maass
- mf.siegel.lift.miyawaki
- lmfdb/lfunctions/Lfunction.py (line 1499)
- lmfdb/siegel_modular_forms/templates/ModularForm_GSp4_Q_dimensions.html (line 5)
- lmfdb/siegel_modular_forms/templates/ModularForm_GSp4_Q_family.html (line 30)
- lmfdb/siegel_modular_forms/templates/ModularForm_GSp4_Q_index.html (line 5)
- lmfdb/siegel_modular_forms/templates/ModularForm_GSp4_Q_index.html (line 13)