If \(f\) is a Maass form with Laplace eigenvalue \(\lambda = \frac{1}{4}+R^{2}\), the number $R$ is said to be the spectral parameter of \(f\).
Authors:
Knowl status:
- Review status: reviewed
- Last edited by Nathan Ryan on 2019-05-01 11:18:47
Referred to by:
History:
(expand/hide all)
- mf.maass.exceptional_eigenvalue
- mf.maass.mwf.coefficients
- mf.maass.mwf.eigenvalue
- mf.maass.mwf.precision
- mf.maass.spectral_index
- rcs.rigor.maass
- rcs.rigor.maass_rigor
- lmfdb/lfunctions/templates/MaassformGL2.html (line 22)
- lmfdb/maass_forms/main.py (line 290)
- lmfdb/maass_forms/main.py (line 355)
- lmfdb/maass_forms/main.py (line 424)
- lmfdb/maass_forms/templates/maass_browse.html (line 20)
- lmfdb/maass_forms/templates/maass_browse_graph.html (line 7)
- lmfdb/maass_forms/templates/maass_form.html (line 39)
- 2019-05-01 11:18:47 by Nathan Ryan (Reviewed)
- 2019-05-01 11:14:49 by Nathan Ryan (Reviewed)
- 2011-09-06 05:50:21 by Holly Swisher