Given a Hilbert modular form $f$ that is defined in terms of the totally real number field $F$, the **level** of $f$ is a nonzero ideal $\mathfrak{N}$ of the ring of integers $\Z_F$ of $F$ that determines the group $\Gamma_0(\mathfrak{N})$ under which $f$ transforms. In the LMFDB, such an ideal $\mathfrak{N}$ is identified by a label.

The **level norm** is the absolute norm of the level of the form.

**Knowl status:**

- Review status: reviewed
- Last edited by Holly Swisher on 2019-04-26 19:14:42

**Referred to by:**

- lmfdb/hilbert_modular_forms/hilbert_modular_form.py (line 143)
- lmfdb/hilbert_modular_forms/hilbert_modular_form.py (line 675)
- lmfdb/hilbert_modular_forms/hilbert_modular_form.py (line 709)
- lmfdb/hilbert_modular_forms/hmf_stats.py (line 32)
- lmfdb/hilbert_modular_forms/hmf_stats.py (line 53)
- lmfdb/hilbert_modular_forms/templates/hilbert_modular_form.html (line 20)

**History:**(expand/hide all)

**Differences**(show/hide)