An eta quotient is any function $f$ of the form \[ f(z)=\prod_{1\leq i\leq s}\eta^{r_i}(m_iz), \] where $m_i\in\mathbb{N}$ and $r_i\in\mathbb{Z}$ and $\eta(z)$ is the Dedekind eta function.
An eta product is an eta quotient in which all the $r_i$ are non-negative.
Authors:
Knowl status:
- Review status: beta
- Last edited by Andreea Mocanu on 2016-03-23 14:52:16
Referred to by:
History:
(expand/hide all)
- mf.11.2.1.a.formulas
- mf.12.3.5.a.formulas
- mf.14.2.1.a.formulas
- mf.144.2.1.a.formulas
- mf.15.2.1.a.formulas
- mf.16.3.15.a.formulas
- mf.2.8.1.a.formulas
- mf.20.2.1.a.formulas
- mf.24.2.1.a.formulas
- mf.27.2.1.a.formulas
- mf.3.6.1.a.formulas
- mf.32.2.1.a.formulas
- mf.36.2.1.a.formulas
- mf.4.5.3.a.formulas
- mf.4.6.1.a.formulas
- mf.48.2.1.a.formulas
- mf.5.4.1.a.formulas
- mf.6.4.1.a.formulas
- mf.64.2.1.a.formulas
- mf.7.3.6.a.formulas
- mf.8.3.3.a.formulas
- mf.8.4.1.a.formulas
- mf.80.2.1.b.formulas
- mf.9.4.1.a.formulas