We define the Dedekind eta function $\eta(z)$ by the formula \[ \eta(z)=q^{1/24}\prod_{n\geq1}(1-q^n), \] where $q=e^{2\pi iz}$.
The Dedekind eta function is a crucial example of a half-integral weight modular form, having weight $1/2$ and level $1$.
It is related to the Discriminant modular form via the formula \[ \Delta(z)=\eta^{24}(z). \]
Authors:
Knowl status:
- Review status: beta
- Last edited by Andreea Mocanu on 2016-03-30 16:18:44
Referred to by:
History:
(expand/hide all)