Given $\gamma=\begin{pmatrix} a & b \\ c&d \end{pmatrix} \in \textrm{PSL}_2(\mathbb{C})$ and $z=(x,y) \in \mathcal{H}_3$, hyperbolic 3-space, let us introduce the multiplier system $$J(\gamma, z):= \begin{pmatrix} cx+d & -cy \\ \bar{c}y & \overline{cx+d}\end{pmatrix}.$$
Given a function $F: \mathcal{H}_3 \rightarrow \C^{k+1}$ and $\gamma \in \textrm{PSL}_2(\mathbb{C})$, we define the "slash operator" $$(F |_k\gamma)(z):=\mathrm{Sym}^k(J(\gamma, z)^{-1}) \ F(\gamma z),$$ where $\mathrm{Sym}^k$ is the symmetric $k^{th}$ power of the standard representation of $\textrm{PSL}_2(\mathbb{C})$ on $\mathbb{C}^2$.
The center of the universal enveloping algebra of the Lie algebra associated to the real Lie group $\textrm{PSL}_2(\mathbb{C})$ is generated by two elements (Casimir operators) $\Psi, \Psi'$. These act on real analytic functions $F: \mathcal{H}_3 \rightarrow \mathbb{C}^{k+1}$ as differential operators.
Let $K$ an imaginary quadratic field and $\mathcal{O}_K$ be its ring of integers. Let $\Gamma$ be a congruence subgroup of a Bianchi group $\textrm{PSL}_2(\mathcal{O}_K)$. A Bianchi modular form for $\Gamma$ with weight $k$ is a real analytic function $F: \mathcal{H}_3 \rightarrow \mathbb{C}^{k+1}$ with the properties
-
$F|_k\gamma = F$ for every $\gamma \in \Gamma$,
-
$\Psi F = 0$ and $\Psi' F = 0$,
-
$F$ has at worst polynomial growth at each cusp of $\Gamma$.
A Bianchi modular form $F$ has a Fourier-Bessel expansion.
The set $M_k(\Gamma)$ of Bianchi modular forms for $\Gamma$ with weight $k$ is a finite dimensional complex vector space.
- Review status: reviewed
- Last edited by John Cremona on 2021-04-29 11:50:14
- dq.mf.bianchi.extent
- dq.mf.bianchi.source
- mf
- mf.bianchi.2.0.4.1-16384.1-d.top
- mf.bianchi.fourierbessell
- mf.bianchi.hecke_algebra
- mf.bianchi.level
- mf.bianchi.newform
- mf.bianchi.search_input
- mf.bianchi.spaces
- mf.bianchi.weight
- rcs.cande.mf.bianchi
- rcs.source.mf.bianchi
- lmfdb/bianchi_modular_forms/bianchi_modular_form.py (line 800)
- lmfdb/bianchi_modular_forms/bianchi_modular_form.py (line 861)
- lmfdb/bianchi_modular_forms/bianchi_modular_form.py (line 871)
- lmfdb/bianchi_modular_forms/templates/bmf-field_dim_table.html (line 11)
- 2021-04-29 11:50:14 by John Cremona (Reviewed)
- 2020-10-26 09:36:36 by Andrew Sutherland
- 2020-10-22 08:05:35 by Andrew Sutherland
- 2020-10-22 08:01:13 by Andrew Sutherland
- 2019-05-08 14:03:16 by Holly Swisher
- 2019-05-08 14:02:32 by Holly Swisher
- 2019-05-08 13:57:22 by Holly Swisher
- 2019-05-08 13:52:28 by Holly Swisher
- 2019-04-30 16:30:30 by Holly Swisher
- 2018-12-13 06:02:11 by Andrew Sutherland (Reviewed)