This cusp form can be expressed as an eta quotient \[ \frac{\eta^6(4z)\eta^6(20z)}{\eta^2(2z)\eta^2(8z)\eta^2(10z)\eta^2(40z)}=q\prod_{n=1}^\infty(1-q^{4n})^6(1-q^{20n})^6(1-q^{2n})^{-2}(1-q^{8n})^{-2}(1-q^{10n})^{-2}(1-q^{40n})^{-2}, \] where $q=e^{2\pi iz}$.
Authors:
Knowl status:
- Review status: beta
- Last edited by Andreea Mocanu on 2016-03-31 12:26:03
Referred to by:
History:
(expand/hide all)
Not referenced anywhere at the moment.