This cusp form can be expressed as an eta quotient \[ \frac{\eta^8(8z)}{\eta^2(4z)\eta^2(16z)}=q\prod_{n=1}^\infty(1-q^{8n})^8(1-q^{4n})^{-2}(1-q^{16n})^{-2}, \] where $q=e^{2\pi iz}$.
Authors:
Knowl status:
- Review status: beta
- Last edited by Andreea Mocanu on 2016-03-31 10:32:42
Referred to by:
History:
(expand/hide all)
Not referenced anywhere at the moment.