This cusp form can be expressed as an eta quotient \[ \frac{\eta^4(4z)\eta^4(12z)}{\eta(2z)\eta(6z)\eta(8z)\eta(24z)}=q\prod_{n=1}^\infty(1-q^{4n})^4(1-q^{12n})^4(1-q^{2n})^{-1}(1-q^{6n})^{-1}(1-q^{8n})^{-1}(1-q^{24n})^{-1}, \] where $q=e^{2\pi iz}$.
Authors:
Knowl status:
- Review status: beta
- Last edited by Andrew Sutherland on 2016-07-11 21:34:13
Referred to by:
History:
(expand/hide all)
Not referenced anywhere at the moment.