This cusp form can be expressed as an eta product $\eta(z)\eta(3z)\eta(5z)\eta(15z)=q\prod_{n=1}^\infty(1-q^n)(1-q^{3n})(1-q^{5n})(1-q^{15n})$, where $q=e^{2\pi iz}$.
Authors:
Knowl status:
- Review status: beta
- Last edited by Andrew Sutherland on 2016-07-11 21:30:50
Referred to by:
History:
(expand/hide all)
Not referenced anywhere at the moment.