Let $L/K$ be an extension of $p$-adic fields. Let $\kappa$ be the residue field of $K$ and let $\lambda$ be the residue field of $L$. The residue field degree $f$ of $L/K$ is the degree of the field extension $\lambda/\kappa$.
The base residue field degree $f_0$ of $L/K$ is the residue field degree of $K/\Q_p$. The absolute residue field degree $f_{\mathrm{abs}}$ of $L/K$ is the residue field degree of $L$ over $\Q_p$.
Knowl status:
- Review status: reviewed
- Last edited by David Roe on 2024-11-12 00:44:19
Referred to by:
History:
(expand/hide all)
- lf.eisenstein_diagram
- lf.family_ambiguity
- lf.family_invariants
- lf.family_label
- lf.family_mass
- lf.family_polynomial
- lf.field.label
- lf.field_label
- lf.heights
- lf.herbrand_input
- lf.herbrand_invariant
- lf.invariants
- lf.means
- lf.packet
- lf.roots_of_unity
- lf.slopes
- lf.unramified_degree
- lmfdb/local_fields/main.py (line 451)
- lmfdb/local_fields/main.py (lines 599-601)
- lmfdb/local_fields/main.py (line 1409)
- lmfdb/local_fields/main.py (line 1574)
- lmfdb/local_fields/main.py (line 1598)
- lmfdb/local_fields/main.py (line 1622)
- lmfdb/local_fields/templates/lf-family.html (line 19)
- lmfdb/local_fields/templates/lf-show-field.html (line 16)
- lmfdb/number_fields/templates/nf-show-field.html (line 280)
- 2024-11-12 00:44:19 by David Roe (Reviewed)
- 2024-11-12 00:18:37 by David Roe
- 2024-11-10 14:31:58 by Kevin Keating
- 2024-11-10 14:17:21 by Kevin Keating
- 2020-10-26 09:34:42 by Andrew Sutherland (Reviewed)
- 2020-10-24 17:01:49 by Andrew Sutherland
- 2020-10-24 16:03:49 by Andrew Sutherland
- 2018-05-23 15:02:11 by John Cremona (Reviewed)