If $F$ is a finite extension of $\Q_p$ and $K$ a finite extension of $F$. Then $\mathcal{O}_F$ and $\mathcal{O}_K$, the ring of integers of $F$ and $K$ are discrete valuation domains, so they have unique maximal ideals $P_F$ and $P_K$ which are principal. If $P_F=(\pi_F)$, the element $\pi_F$ is a uniformizer for $F$.
The principal ideal $\pi_F\mathcal{O}_K=P_K^e$ for some positive integer $e$. The integer $e$ is the ramification index for $K$ over $F$. The ramification index of $K$ is then the ramification index for $K$ over $\Q_p$.
If $e=1$, then we say that the extension is unramified, and if $e=[K:\Q_p]$, then we say that the extension is totally ramified.
Authors:
Knowl status:
- Review status: reviewed
- Last edited by John Cremona on 2018-05-30 08:52:33
Referred to by:
History:
(expand/hide all)
- lf.eisenstein_form
- lf.eisenstein_polynomial
- lf.family_invariants
- lf.family_label
- lf.family_ramification
- lf.herbrand_invariant
- lf.indices_of_inseparability
- lf.invariants
- lf.log
- lf.means
- lf.packet
- lf.ramification_polygon
- lf.residual_polynomials
- lf.unramified_degree
- lf.unramified_subfield
- lf.unramified_totally_ramified_tower
- lmfdb/local_fields/main.py (line 341)
- lmfdb/local_fields/main.py (line 680)
- lmfdb/local_fields/main.py (line 782)
- lmfdb/local_fields/templates/lf-show-field.html (line 15)
- lmfdb/number_fields/templates/nf-show-field.html (line 266)
- 2024-11-12 00:44:50 by David Roe
- 2024-11-12 00:39:06 by David Roe
- 2024-11-12 00:22:37 by David Roe
- 2024-11-12 00:17:04 by David Roe
- 2024-11-10 14:08:36 by Kevin Keating
- 2024-11-10 14:07:13 by Kevin Keating
- 2024-11-10 14:03:51 by Kevin Keating
- 2024-11-10 13:58:39 by Kevin Keating
- 2018-05-30 08:52:33 by John Cremona (Reviewed)