show · lf.inertia_group all knowls · up · search:


  • $K$ be a finite Galois extension of $\Q_p$ for some prime $p$,
  • $\mathcal{O}_K$ the ring of integers for $K$,
  • $P$ the unique maximal ideal of $\mathcal{O}_K$, and
  • $k=\mathcal{O}_K/P$.

Then each $\sigma\in \Gal(K/\Q_p)$ induces a element of $\Gal(k/\F_p)$. The kernel of the resulting homomorphism \[ \Gal(K/\Q_p) \to \Gal(k/\F_p)\] is the inertia group of $K$.

Knowl status:
  • Review status: reviewed
  • Last edited by John Jones on 2018-07-04 23:25:09
Referred to by:
History: (expand/hide all)