The discriminant of a local field $K$ is the square of the determinant of the matrix \[ \left( \begin{array}{ccc} \sigma_1(\beta_1) & \cdots & \sigma_1(\beta_n) \\ \vdots & & \vdots \\ \sigma_n(\beta_1) & \cdots & \sigma_n(\beta_n) \\ \end{array} \right) \] where $\sigma_1,..., \sigma_n$ are the embeddings of $K$ into an algebraic closure $\overline{\mathbb{Q}}_p$, and $\{\beta_1, \ldots, \beta_n\}$ is an integral basis for the ring of integers of $K$.
The discriminant of $K$ is an element of $\mathbb{Z}_p$ which is well-defined up to the square of a unit. Thus, it is of the form $p^c u$ where $u$ is a unit. The value $c$ is the discriminant exponent for $K$. Together with the discriminant root field of $K$, it determines the discriminant of $K$ (up to the square of a unit).
- Review status: reviewed
- Last edited by John Cremona on 2018-05-23 14:43:50
- lf.field.label
- lf.invariants
- lmfdb/local_fields/templates/lf-index.html (line 124)
- lmfdb/local_fields/templates/lf-search.html (line 12)
- lmfdb/local_fields/templates/lf-search.html (line 63)
- lmfdb/local_fields/templates/lf-show-field.html (line 21)
- lmfdb/motives/templates/motive-search.html (line 12)
- lmfdb/number_fields/templates/nf-show-field.html (line 244)
- 2018-05-23 14:43:50 by John Cremona (Reviewed)