The dimension of an integral lattice, $L$, is the rank of its underlying free $\Z$-module.
Authors:
Knowl status:
- Review status: reviewed
- Last edited by Kiran S. Kedlaya on 2018-06-19 02:36:31
Referred to by:
History:
(expand/hide all)
- lattice.2.3.3.1.1.bottom
- lattice.3.4.8.1.2.bottom
- lattice.4.4.2.1.1.bottom
- lattice.5.4.8.1.3.bottom
- lattice.6.3.3.1.1.bottom
- lattice.7.2.4.1.2.bottom
- lattice.8.1.1.1.1.bottom
- lattice.density
- lattice.hermite_number
- lattice.kissing
- lattice.label
- lmfdb/lattice/lattice_stats.py (line 19)
- lmfdb/lattice/lattice_stats.py (line 46)
- lmfdb/lattice/main.py (line 205)
- lmfdb/lattice/main.py (line 483)
- lmfdb/lattice/templates/lattice-index.html (line 12)
- lmfdb/lattice/templates/lattice-single.html (line 8)
- 2018-06-19 02:36:31 by Kiran S. Kedlaya (Reviewed)