Welcome to the LMFDB, the database of L-functions, modular forms, and related objects. These pages are intended to be a modern handbook including tables, formulas, links, and references for L-functions and their underlying objects.

L-functions are ubiquitous in number theory and have applications to mathematical physics and cryptography. By an L-function, we generally mean a Dirichlet series with a functional equation and an Euler product, the simplest example being the Riemann zeta function. Two of the seven Clay Mathematics Million Dollar Millennium Problems deal with properties of these functions, namely the Riemann Hypothesis and the Birch and Swinnerton-Dyer Conjecture.

L-functions arise from and encode information about a number of mathematical objects. It is necessary to exhibit these objects along with the L-functions themselves, since typically we need these objects to compute L-functions. In these pages you will see examples of L-functions coming from modular forms, elliptic curves, number fields, and Dirichlet characters, as well as more generally from automorphic forms, algebraic varieties, and Artin representations. In addition, the database contains details about these objects themselves. See the LMFDB universe for descriptions of connections between these objects. For additional information, there is a useful collection of freely available online sources at <a href="http://www.numbertheory.org/ntw/lecture_notes.html" target="_blank">http://www.numbertheory.org/ntw/lecture_notes.html</a>.

The subject of L-functions is very rich, with many interrelationships. Our goal is to describe the data in ways that faithfully exhibit these interconnections, and to offer access to the data as a means of prompting further exploration and discovery.

We believe that the creation of this website will lead to the development and understanding of new mathematics.

Take a guided tour of the Riemann zeta-function.

**Knowl status:**

- Review status: beta
- Last edited by Andrew Sutherland on 2016-06-27 13:09:58

**Referred to by:**

**History:**(expand/hide all)