For a list of integers $C=[c_1,\ldots, c_n]$ we associate the polynomial \[ \Phi_C(x) = \prod_{j=1}^n \Phi_{c_j}(x) \] where $\Phi_n(x)$ is the $n$-th cyclotomic polynomial.

Given a hypergeometric motive with defining parameters $A$ and $B$, its **Bezout matrix** is the Bezout matrix of $\Phi_A(x)$ and $\Phi_B(x)$ of degree $\max(\deg \Phi_A(x), \deg \Phi_B(x))$.

**Authors:**

**Knowl status:**

- Review status: beta
- Last edited by Wanlin Li on 2019-09-20 16:52:33

**History:**(expand/hide all)

**Differences**(show/hide)