If $H$ is a subgroup of a group $G$, then $H$ is normal if any of the following equivalent conditions hold:
- $gHg^{-1}=H$ for all $g\in G$
- $gHg^{-1}\subseteq H$ for all $g\in G$
- $gH=Hg$ for all $g\in G$
- $(aH)*(bH)=(ab)H$ is a well-defined binary operation on the set of left cosets of $H$
If $H$ is a normal subgroup, we write $H \lhd G$, and the set of left cosets $G/H$ form a group under the operation given in (4) above.
Authors:
Knowl status:
- Review status: reviewed
- Last edited by John Jones on 2019-05-23 19:00:12
Referred to by:
History:
(expand/hide all)
Differences
(show/hide)
- columns.gps_groups.normal_subgroups_known
- columns.gps_groups.number_normal_subgroups
- columns.gps_subgroups.maximal_normal
- columns.gps_subgroups.minimal_normal
- columns.gps_subgroups.normal
- columns.gps_subgroups.quotient
- columns.gps_subgroups.quotient_abelian
- columns.gps_subgroups.quotient_action_image
- columns.gps_subgroups.quotient_action_kernel
- columns.gps_subgroups.quotient_cyclic
- columns.gps_subgroups.quotient_solvable
- columns.gps_subgroups.split
- group.center
- group.chief_series
- group.commutator_subgroup
- group.direct_product
- group.fitting_subgroup
- group.frattini_subgroup
- group.minimal_normal
- group.name
- group.nonsplit_product
- group.normal_series
- group.outer_aut
- group.properties_interdependencies
- group.quotient
- group.radical
- group.semidirect_product
- group.socle
- group.subgroup.complement
- group.subgroup.diagram.lmfdb
- group.subgroup.normal_closure
- group.subgroup.normalizer
- group.subgroup_properties_interdependencies
- group.supersolvable
- lmfdb/groups/abstract/main.py (line 390)
- lmfdb/groups/abstract/main.py (line 928)
- lmfdb/groups/abstract/main.py (line 1803)