show · group.stem_extension all knowls · up · search:

A short exact sequence of groups $$ 1 \to K \to C \to G \to 1 $$ is a stem extension if $K$ is contained in both the center and the commutator of $G$ (we also refer to $K$ as a stem subgroup of $C$). For fixed $G$, the size of $C$ is bounded. For any extension with $C$ of maximal size, the kernel $K$ is isomorphic to the Schur multiplier of $G$. In general, $C$ is only determined up to isoclinism in such an extension, but if $G$ is perfect then $C$ is determined up to isomorphism.

Knowl status:
  • Review status: reviewed
  • Last edited by David Roe on 2021-09-30 20:19:13
Referred to by:
History: (expand/hide all) Differences (show/hide)