The real symplectic group of degree $g$ denoted by $\Sp(2g,\R)$ is defined as \[ \Sp(2g,\R) =\left\{ \gamma=\left(\begin{matrix} a & b\\ c & d\end{matrix}\right)\in\GL(2g,\R): \, \gamma^t J \gamma=J\right\}, \] where $J=\left(\begin{matrix}0 & 1_g\\ -1_g & 0\end{matrix}\right)$ with $1_g$ is the identity matrix of size $g$.
By using the following two properties of the Pfaffian: $\text{Pf}(\gamma^t J \gamma)=\text{Pf}(J)$ and $\text{Pf}(\gamma^t J \gamma)=\det(\gamma)\text{Pf}(J)$, we see that $\Sp(2g,\R)$ is a subgroup of $\SL(2g,\R)$.
The integral symplectic group $\Gamma_g=\Sp(2g,\Z)$, also called the Siegel modular group, is defined as $\Gamma_g=\Sp(2g,\R)\cap{\rm M}(2g,\Z)$. Clearly $\Gamma_1=\SL(2,\Z)$.
Authors:
Knowl status:
- Review status: beta
- Last edited by Fabien Cléry on 2023-11-17 10:33:40
Referred to by:
History:
(expand/hide all)
- group.paramodular
- group.sp2gr.gamma0
- group.sp2gr.gamma1
- group.sp2gr.ppal.congruence
- mf.siegel
- mf.siegel.extent.sp4z
- mf.siegel.extent.sp4z_2
- mf.siegel.extent.sp6z
- mf.siegel.extent.sp8z
- mf.siegel.family.sp4z
- mf.siegel.family.sp4z_2
- mf.siegel.family.sp6z
- mf.siegel.family.sp8z
- mf.siegel.halfspace
- mf.siegel.lift.ikeda
- mf.siegel.lift.maass
- mf.siegel.lift.miyawaki
- lmfdb/siegel_modular_forms/templates/ModularForm_GSp4_Q_Sp4Zj.html (line 4)
- 2023-11-17 10:33:40 by Fabien Cléry
- 2023-11-17 10:33:08 by Fabien Cléry
- 2021-04-27 09:21:02 by Fabien Cléry
- 2021-04-27 04:46:29 by Fabien Cléry
- 2021-04-27 04:36:39 by Fabien Cléry
- 2021-04-27 04:36:25 by Fabien Cléry
- 2021-04-27 04:36:09 by Fabien Cléry
- 2021-04-15 14:56:35 by Fabien Cléry
- 2021-04-15 13:06:42 by Fabien Cléry
- 2021-04-15 13:06:13 by Fabien Cléry
- 2021-04-15 12:57:47 by Fabien Cléry
- 2021-04-15 12:56:33 by Fabien Cléry
- 2021-04-15 12:56:03 by Fabien Cléry
- 2021-04-15 12:54:35 by Fabien Cléry
- 2021-04-15 12:51:44 by Fabien Cléry
- 2021-04-15 12:40:37 by Fabien Cléry
- 2021-04-15 12:38:35 by Fabien Cléry
- 2021-04-15 12:36:06 by Fabien Cléry
- 2021-04-15 12:35:26 by Fabien Cléry
- 2016-03-29 12:44:31 by Jerry Shurman