The symplectic group $\Sp(2g,\R)$ of degree $g$ is a subgroup of $\SL(2g,\R)$, $$\Sp(2g,\R) =\left\{ M=\left(\begin{matrix}A&B\\C&D\end{matrix}\right)\in\GL(2g,\R): \,^tMJM=J\right\},$$ where $J=\left(\begin{matrix}0&I\\-I&0\end{matrix}\right)$ and $^tM$ denotes the transpose of $M$. The defining condition $^tMJM=J$ on elements of $\GL(2g,\R)$ forces them to have determinant 1, although this is not immediate.
Thus the integral symplectic group $\Sp(2g,\Z)$, defined similarly and also called the full modular group, is all of $\Sp(2g, \R)\cap{\rm M}(2g,\Z)$.
Authors:
Knowl status:
- Review status: beta
- Last edited by Jerry Shurman on 2016-03-29 12:44:31
Referred to by:
History:
(expand/hide all)
- group.paramodular
- group.sp2gr.gamma0
- mf.siegel
- mf.siegel.extent.sp4z
- mf.siegel.extent.sp4z_2
- mf.siegel.extent.sp6z
- mf.siegel.extent.sp8z
- mf.siegel.family.sp4z
- mf.siegel.family.sp4z_2
- mf.siegel.family.sp6z
- mf.siegel.family.sp8z
- mf.siegel.lift.maass
- mf.siegel.lift.miyawaki
- lmfdb/siegel_modular_forms/templates/ModularForm_GSp4_Q_Sp4Zj.html (line 4)