If $G$ is a group and $\rho:G\to \GL_n(\C)$ is a representation of $G$, then the character of $\rho$ is the function $\mathrm{Tr}\circ \rho$ where $\mathrm{Tr}$ is the function which takes the trace of a square matrix.
Authors:
Knowl status:
- Review status: reviewed
- Last edited by Jennifer Paulhus on 2022-07-18 17:35:24
Referred to by:
History:
(expand/hide all)
- artin.conductor
- artin.frobenius_schur_indicator
- curve.highergenus.aut.characters
- group.complex_character_table
- group.division
- group.elementary
- group.hyperelementary
- group.rational_group
- group.representation.faithful
- group.representation.irrep
- group.representation.rational_character
- group.representation.type
- lmfdb/groups/abstract/stats.py (lines 180-184)
- lmfdb/groups/abstract/templates/abstract-show-group.html (line 180)
- 2022-07-18 17:35:24 by Jennifer Paulhus (Reviewed)
- 2022-07-18 17:34:57 by Jennifer Paulhus
- 2022-07-18 17:18:35 by Jennifer Paulhus
- 2019-05-09 14:34:42 by John Jones