If $G$ is a group, its inner automorphism group is a normal subgroup of the full automorphism group. Then, the outer automorphism group of $G$ is \[ \mathrm{Out}(G) = \Aut(G)/\mathrm{Inn}(G).\]
Authors:
Knowl status:
- Review status: beta
- Last edited by John Jones on 2019-05-23 23:32:21
Referred to by:
History:
(expand/hide all)
- columns.gps_groups.outer_group
- columns.gps_groups.outer_order
- group.abstract.336.210.bottom
- lmfdb/groups/abstract/main.py (line 831)
- lmfdb/groups/abstract/main.py (line 1490)
- lmfdb/groups/abstract/main.py (line 1498)
- lmfdb/groups/abstract/stats.py (line 164)
- lmfdb/groups/abstract/templates/abstract-show-group.html (line 89)