A finite group $G$ is nilpotent if it is a direct product of $p$-groups. Equivalently, all Sylow subgroups of $G$ are normal. Equivalently, $G$ has a central series \[\{1\}=G_0 \lhd G_1 \lhd G_2 \lhd \ldots \lhd G_k = G,\] a nested sequence of normal subgroups with $[G,G_{i+1}] \leq G_i$.
The smallest such $k$ is the nilpotency class of $G$. It is $0$ for $C_1$, $1$ for non-trivial abelian groups, and $\geq 2$ for all other nilpotent groups. By convention, one can define the nilpotency class of a non-nilpotent group to be $-1$.
Nilpotent groups are closed under subgroups and quotients (but not extensions), and are solvable, supersolvable and monomial.
Authors:
Knowl status:
- Review status: reviewed
- Last edited by Jennifer Paulhus on 2022-07-18 16:53:26
Referred to by:
History:
(expand/hide all)
- columns.gps_groups.nilpotency_class
- columns.gps_groups.nilpotent
- group.abstract.6.1.bottom
- group.fitting_subgroup
- group.isoclinism
- group.lower_central_series
- group.properties_interdependencies
- group.subgroup_properties_interdependencies
- group.supersolvable
- group.type
- group.upper_central_series
- lmfdb/galois_groups/main.py (line 121)
- lmfdb/galois_groups/main.py (line 487)
- lmfdb/galois_groups/main.py (line 541)
- lmfdb/galois_groups/templates/gg-show-group.html (line 30)
- lmfdb/groups/abstract/main.py (line 222)
- lmfdb/groups/abstract/main.py (line 252)
- lmfdb/groups/abstract/main.py (line 401)
- lmfdb/groups/abstract/main.py (line 839)
- lmfdb/groups/abstract/main.py (line 1502)
- lmfdb/groups/abstract/main.py (line 1601)
- lmfdb/groups/abstract/stats.py (line 80)
- lmfdb/groups/abstract/stats.py (line 146)
- lmfdb/groups/abstract/templates/abstract-index.html (line 18)
- 2022-07-18 16:53:26 by Jennifer Paulhus (Reviewed)
- 2019-09-06 01:49:44 by John Jones
- 2019-05-23 18:32:50 by John Jones
- 2019-05-23 18:31:00 by John Jones
- 2019-05-22 20:05:44 by Tim Dokchitser
- 2019-05-22 19:36:14 by Tim Dokchitser