If $G$ is a group and $S$ is a subset of $G$, then $S$ is a set of generators if the smallest subgroup of $G$ containing $S$ equals $G$.
Equivalently, $S$ generates $G$ if \[ G=\bigcap_{S\subseteq H\leq G} H \,.\]
The automorphism group of $G$ acts on such $S$, and we say $S$ and $S'$ are equivalent if they are related by this action.
Authors:
Knowl status:
- Review status: reviewed
- Last edited by David Roe on 2021-09-27 19:07:46
Referred to by:
History:
(expand/hide all)
- dq.ec.reliability
- dq.ecnf.source
- group.cyclic
- group.rank
- rcs.rigor.ec.q
- rcs.source.ec
- lmfdb/galois_groups/templates/gg-show-group.html (line 34)
- lmfdb/groups/abstract/main.py (line 1401)
- lmfdb/groups/abstract/templates/abstract-show-group.html (line 171)
- lmfdb/groups/abstract/templates/abstract-show-group.html (line 282)
- lmfdb/groups/abstract/templates/abstract-show-subgroup.html (line 17)
- lmfdb/groups/abstract/templates/abstract-show-subgroup.html (line 190)
- lmfdb/groups/abstract/templates/abstract-show-subgroup.html (line 201)
- lmfdb/groups/abstract/templates/auto_gens_page.html (line 9)
- 2021-09-27 19:07:46 by David Roe (Reviewed)
- 2018-07-07 20:43:55 by John Jones (Reviewed)