The exponent of a group $G$ is the smallest positive integer $n$ such that $g^n=e$ for all $g\in G$. If no such positive integer exists, then the exponent of the group is infinite.
Authors:
Knowl status:
- Review status: reviewed
- Last edited by John Jones on 2019-05-23 18:16:29
Referred to by:
History:
(expand/hide all)
- columns.gps_groups.exponent
- columns.gps_groups_cc.powers
- lmfdb/groups/abstract/main.py (line 937)
- lmfdb/groups/abstract/main.py (line 1668)
- lmfdb/groups/abstract/templates/abstract-show-group.html (line 23)
- lmfdb/groups/abstract/templates/abstract-show-subgroup.html (line 16)
- lmfdb/groups/abstract/templates/abstract-show-subgroup.html (line 41)
- lmfdb/groups/abstract/templates/abstract-show-subgroup.html (line 63)
- 2019-05-23 18:16:29 by John Jones (Reviewed)