The derived series of a finite group $G$ is the chain of subgroups \[ G =G^{(0)}\rhd G^{(1)} \rhd G^{(2)} \rhd \cdots \rhd G^{(k)} \] where $G^{(i+1)}$ is the commutator subgroup of $G^{(i)}$ for all $i$, each inclusion is proper, and $G^{(k+1)}=G^{(k)}$.
A group is solvable if and only if $G^{(k)}=\langle e\rangle$. In this case, $k$ is the solvable length of $G$.
Authors:
Knowl status:
- Review status: reviewed
- Last edited by John Jones on 2019-05-24 00:00:02
Referred to by:
History:
(expand/hide all)
- group.abstract.432.734.bottom
- group.isoclinism
- group.type
- lmfdb/groups/abstract/main.py (line 225)
- lmfdb/groups/abstract/main.py (line 253)
- lmfdb/groups/abstract/main.py (line 840)
- lmfdb/groups/abstract/main.py (line 1524)
- lmfdb/groups/abstract/stats.py (line 154)
- lmfdb/groups/abstract/web_groups.py (line 1824)
- 2019-05-24 00:00:02 by John Jones (Reviewed)