If $G$ is a group, the center of $G$ is the set \[ Z(G) = \{g\in G\mid gh=hg \text{ for all } h\in G\}.\] It is a normal subgroup of $G$.
Authors:
Knowl status:
- Review status: reviewed
- Last edited by John Jones on 2019-05-23 19:16:23
Referred to by:
History:
(expand/hide all)
- columns.gps_groups.smallrep
- group.abstract.18.4.bottom
- group.abstract.336.210.bottom
- group.center_isolabel
- group.central
- group.central_quotient
- group.inner_automorphism
- group.properties_interdependencies
- group.stem_extension
- group.stem_group
- group.subgroup.projective_image
- group.upper_central_series
- lmfdb/groups/abstract/main.py (line 377)
- lmfdb/groups/abstract/main.py (line 845)
- lmfdb/groups/abstract/templates/abstract-show-group.html (line 340)
- lmfdb/groups/abstract/web_groups.py (line 649)
- lmfdb/groups/abstract/web_groups.py (line 1786)
- 2019-05-23 19:16:23 by John Jones (Reviewed)