If $G$ is a group, an automorphism of $G$ is a group isomorphism $f:G\to G$.
The set of automorphisms of $G$, $\Aut(G)$, is a group under composition.
Authors:
Knowl status:
- Review status: reviewed
- Last edited by John Jones on 2019-05-23 19:08:27
Referred to by:
History:
(expand/hide all)
- columns.gps_groups.eulerian_function
- columns.gps_groups.factors_of_aut_order
- group.abstract.128.1820.bottom
- group.abstract.18.3.bottom
- group.abstract.360.118.top
- group.abstract.64.116.top
- group.almost_simple
- group.autjugacy_class
- group.autjugate_subgroup
- group.characteristic_subgroup
- group.conjugacy_class
- group.generators
- group.inner_automorphism
- group.outer_aut
- group.semidirect_product
- group.subgroup_label
- group.subgroup_properties_interdependencies
- group.weyl_group
- lmfdb/groups/abstract/main.py (line 963)
- lmfdb/groups/abstract/main.py (line 1682)
- lmfdb/groups/abstract/main.py (line 1690)
- lmfdb/groups/abstract/stats.py (line 192)
- lmfdb/groups/abstract/templates/abstract-show-group.html (line 24)
- lmfdb/groups/abstract/templates/abstract-show-group.html (line 257)
- lmfdb/groups/abstract/templates/abstract-show-subgroup.html (lines 83-86)
- lmfdb/groups/abstract/templates/auto_gens_page.html (line 9)
- 2019-05-23 19:08:27 by John Jones (Reviewed)