A group is abelian if its operation is commutative.
Authors:
Knowl status:
- Review status: reviewed
- Last edited by John Jones on 2018-08-06 04:20:53
Referred to by:
History:
(expand/hide all)
- columns.gps_groups.abelian
- columns.gps_subgroups.abelian
- columns.gps_subgroups.quotient_abelian
- columns.gps_subgroups.quotient_action_image
- columns.gps_subgroups.quotient_action_kernel
- ec.analytic_sha_order
- group.a_group
- group.abelianization
- group.abstract.128.1820.bottom
- group.abstract.168.42.top
- group.abstract.18.3.bottom
- group.abstract.18.4.bottom
- group.abstract.360.118.top
- group.abstract.6.1.bottom
- group.abstract.60.5.top
- group.abstract.64.116.top
- group.commutator_subgroup
- group.metabelian
- group.nilpotent
- group.properties_interdependencies
- group.solvable
- group.subgroup_properties_interdependencies
- group.supersolvable
- group.torsion
- group.type
- ring
- lmfdb/galois_groups/templates/gg-show-group.html (line 96)
- lmfdb/groups/abstract/main.py (lines 261-262)
- lmfdb/groups/abstract/main.py (lines 438-439)
- lmfdb/groups/abstract/main.py (line 1055)
- lmfdb/groups/abstract/main.py (line 1075)
- lmfdb/groups/abstract/main.py (line 1734)
- lmfdb/groups/abstract/main.py (lines 2077-2081)
- lmfdb/groups/abstract/stats.py (lines 99-100)
- lmfdb/groups/abstract/stats.py (lines 192-197)
- lmfdb/sato_tate_groups/templates/st_display.html (line 33)
- 2018-08-06 04:20:53 by John Jones (Reviewed)