The **genus** of an open subgroup $H$ of $\GL_2(\widehat\Z)$ or $\GL_2(\widehat\Z_\ell)$ of level $N$ is defined by the formula
\[
g(H) := g(\Gamma_H) := 1+\frac{i(\Gamma_H)}{12} - \frac{\nu_2(\Gamma_H)}{4} - \frac{\nu_3(\Gamma_H)}{3} - \frac{\nu_\infty(\Gamma_H)}{2},
\]
where $\Gamma_H:=\pm H \cap \SL_2(N)$, where $H$ and $\SL_2(N)$ denote projections to $\GL_2(\Z/N\Z)$, and

- $i(\Gamma_H)=[\SL_2(N):\Gamma_H]$,
- $\nu_2$ is the number of right cosets of $\Gamma_H$ in $\SL_2(N)$ that contain $\begin{bmatrix}0&1\\-1&0\end{bmatrix}$,
- $\nu_3$ is the number of right cosets of $\Gamma_H$ in $\SL_2(N)$ that contain the matrix $\begin{bmatrix}0&1\\-1&-1\end{bmatrix}$,
- $\nu_{\infty}(\Gamma_H)$ is the number of orbits of the right coset space $\Gamma_H\backslash \SL_2(N)$ under the right action of $\begin{bmatrix}1&1\\0&1\end{bmatrix}$.

The genus $g(H)$ is a nonnegative integer that equals the genus of each geometric component of the modular curve $X_H$.

This coincides with the genus of the Riemann surface $\mathcal H^*/\Gamma$, where $\mathcal H^*$ is the completed upper half-plane and $\Gamma$ is the inverse image of $\Gamma_H$ in $\SL_2(\Z)$.

**Authors:**

**Knowl status:**

- Review status: beta
- Last edited by Andrew Sutherland on 2022-03-24 20:04:03

**Referred to by:**

**History:**(expand/hide all)

- 2022-03-24 20:04:03 by Andrew Sutherland
- 2022-03-24 15:56:32 by Bjorn Poonen
- 2021-09-18 14:53:06 by Andrew Sutherland
- 2021-09-18 14:23:59 by Andrew Sutherland
- 2021-09-18 14:06:01 by Andrew Sutherland
- 2021-07-17 11:56:34 by Andrew Sutherland
- 2021-07-17 11:53:50 by Andrew Sutherland

**Differences**(show/hide)