show · gg.generic_polynomial all knowls · up · search:

Let $K$ be a field and $G$ a finite group, $t_1, \ldots, t_n$ and $x$ indeterminants. A polynomial $f(t_1,\ldots,t_n,x)\in K(t_1,\ldots,t_n)[x]$ is generic for G if

  1. the splitting field $L$ of $f$ is Galois and regular over $K(t_1,\ldots,t_n)$
  2. $\Gal(L/K(t_1,\ldots,t_n))\cong G$
  3. every Galois extension $E/K$ with $\Gal(E/K)\cong G$ is the splitting field of $f(a_1,\ldots,a_n,x)$ for some $(a_1,\ldots,a_n)\in K^n$
  4. condition 3 holds for every extension field of $K$.
Authors:
Knowl status:
  • Review status: beta
  • Last edited by John Jones on 2025-06-27 21:38:38
Referred to by:
History: (expand/hide all)