The rank of an elliptic curve $E$ defined over a number field $K$ is the rank of its Mordell-Weil group $E(K)$.
The Mordell-Weil Theorem says that $E(K)$ is a finitely-generated abelian group, hence \[ E(K) \cong E(K)_{\rm tor} \times \Z^r\] where $E(K)_{\rm tor}$ is the finite torsion subgroup of $E(K)$, and $r\geq 0$ is the rank.
Rank is an isogeny invariant: all curves in an isogeny class have the same rank.
Authors:
Knowl status:
- Review status: reviewed
- Last edited by Vishal Arul on 2019-09-20 16:29:03
Referred to by:
History:
(expand/hide all)
- dq.ec.reliability
- dq.ec.source
- ec.bsdconjecture
- ec.congruent_number_curve
- ec.mordell_weil_group
- ec.q.220110.bn1.bottom
- ec.q.234446.a1.bottom
- ec.q.37.a1.top
- ec.q.49.a2.bottom
- ec.q.65.a1.bottom
- ec.q.analytic_sha_value
- ec.q.bsd_invariants
- ec.q.bsdconjecture
- ec.regulator
- rcs.rigor.ec.q
- rcs.rigor.lfunction.ec
- rcs.source.ec.q
- lmfdb/ecnf/ecnf_stats.py (line 79)
- lmfdb/ecnf/main.py (line 445)
- lmfdb/ecnf/main.py (line 855)
- lmfdb/ecnf/templates/ecnf-curve.html (line 173)
- lmfdb/ecnf/templates/ecnf-curve.html (line 257)
- lmfdb/ecnf/templates/ecnf-isoclass.html (line 68)
- lmfdb/elliptic_curves/elliptic_curve.py (line 180)
- lmfdb/elliptic_curves/elliptic_curve.py (line 196)
- lmfdb/elliptic_curves/elliptic_curve.py (line 423)
- lmfdb/elliptic_curves/elliptic_curve.py (line 1025)
- lmfdb/elliptic_curves/templates/congruent_number_data.html (line 86)
- lmfdb/elliptic_curves/templates/ec-index.html (line 16)
- lmfdb/elliptic_curves/templates/ec-isoclass.html (line 101)
- lmfdb/elliptic_curves/templates/ec-isoclass.html (line 107)
- lmfdb/elliptic_curves/templates/ec-stats.html (line 8)
- lmfdb/elliptic_curves/test_browse_page.py (line 22)
- 2019-09-20 16:29:03 by Vishal Arul (Reviewed)
- 2019-02-08 10:04:19 by John Cremona (Reviewed)