The conductor $N$ of an elliptic curve $E$ defined over $\Q$ is a positive integer divisible by the primes of bad reduction and no others. It has the form $N=\prod p^{e_p}$, where the exponent $e_p$ is
-
$e_p=1$ if $E$ has multiplicative reduction at $p$,
-
$e_p=2$ if $E$ has additive reduction at $p$ and $p\ge5$,
-
$2\leq e_p\leq 5$ if $E$ has additive reduction and $p=3$, and
-
$2\leq e_p\leq 8$ if $E$ has additive reduction and $p=2$.
For all primes $p$, there is an algorithm of Tate that simultaneously creates a local minimal Weierstrass equation and computes the exponent of the conductor. See:
- J. Tate, Algorithm for determining the type of a singular fiber in an elliptic pencil, Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), 33-52. Lecture Notes in Math., Vol. 476, Springer, Berlin, 1975. [MR:0393039]
- J.H. Silverman, Advanced topics in the arithmetic of elliptic curves, GTM 151, Springer-Verlag, New York, 1994.[MR:1312368]
Authors:
Knowl status:
- Review status: reviewed
- Last edited by David Farmer on 2019-09-04 19:01:27
Referred to by:
History:
(expand/hide all)
- dq.ec.extent
- ec.congruent_number_curve
- ec.q.11.a1.bottom
- ec.q.121.b2.bottom
- ec.q.17.a3.bottom
- ec.q.210.e6.bottom
- ec.q.210.e6.top
- ec.q.234446.a1.bottom
- ec.q.234446.a1.top
- ec.q.30.a3.bottom
- ec.q.30.a6.bottom
- ec.q.30.a6.top
- ec.q.37.a1.bottom
- ec.q.37.a1.top
- ec.q.37.b2.bottom
- ec.q.389.a1.top
- ec.q.65.a1.bottom
- ec.q.abc_quality
- ec.q.cremona_label
- ec.q.invariants
- ec.q.lmfdb_label
- ec.q.manin_constant
- ec.q.minimal_twist
- ec.q.optimal
- ec.q.szpiro_ratio
- rcs.cande.ec.q
- rcs.cande.lfunction
- rcs.rigor.ec.q
- lmfdb/elliptic_curves/elliptic_curve.py (line 181)
- lmfdb/elliptic_curves/elliptic_curve.py (line 432)
- lmfdb/elliptic_curves/elliptic_curve.py (line 1293)
- lmfdb/elliptic_curves/templates/bhkssw.html (line 42)
- lmfdb/elliptic_curves/templates/congruent_number_data.html (line 68)
- lmfdb/elliptic_curves/templates/ec-curve.html (line 176)
- lmfdb/elliptic_curves/templates/ec-index.html (line 13)
- lmfdb/elliptic_curves/templates/ec-stats.html (line 7)
- lmfdb/elliptic_curves/templates/sw_ecdb.html (line 6)
- lmfdb/elliptic_curves/templates/sw_ecdb.html (line 27)
- lmfdb/lfunctions/templates/ellipticcurve.html (line 7)
- lmfdb/templates/datasets.html (line 38)
- 2019-09-04 19:01:27 by David Farmer (Reviewed)
- 2019-09-04 19:00:07 by David Farmer
- 2018-06-17 21:52:01 by John Jones (Reviewed)