The isogeny class (over a field $K$) of an elliptic curve $E$ defined over $K$ is the set of all isomorphism classes of elliptic curves defined over $K$ that are isogenous to $E$ over $K$. Over a number field $K$ this is always a finite set; over $\Q$, it has at most 8 elements by a theorem of Kenku [MR:0675184, 10.1016/0022-314X(82)90025-7].
Knowl status:
- Review status: reviewed
- Last edited by Kiran S. Kedlaya on 2019-10-10 14:40:15
Referred to by:
History:
(expand/hide all)
- ec.congruent_number_curve
- ec.curve_label
- ec.isogeny
- ec.isogeny_class_degree
- ec.isogeny_graph
- ec.isogeny_matrix
- ec.q.37.a1.bottom
- ec.q.cremona_label
- ec.q.lmfdb_label
- ec.q.minimal_twist
- ec.q.optimal
- ec.q.search_input
- ec.rank
- ec.search_input
- rcs.cande.lfunction
- lmfdb/ecnf/ecnf_stats.py (lines 84-85)
- lmfdb/ecnf/main.py (line 431)
- lmfdb/ecnf/main.py (line 827)
- lmfdb/ecnf/templates/ecnf-curve.html (lines 483-491)
- lmfdb/elliptic_curves/elliptic_curve.py (line 428)
- lmfdb/elliptic_curves/elliptic_curve.py (line 1192)
- lmfdb/elliptic_curves/elliptic_curve.py (line 1220)
- 2019-10-10 14:40:15 by Kiran S. Kedlaya (Reviewed)
- 2018-06-18 21:24:04 by John Jones (Reviewed)