Let $G$ be a group of automorphisms acting on a curve $X/\C$ of genus at least $2$, let $g_0$ be the genus of the quotient $Y:=X/G$, let $B$ be the set of branch points of the projection $\phi\colon X\to Y$, and let $m_1 \leq m_2 \leq \ldots \leq m_r$ be the orders of the standard generators for $\pi_1(Y-B,y_0)$ corresponding to the elements of $B=\{y_1,\ldots,y_r\}$.
The sequence of integers $[g_0; m_1, \ldots, m_r]$ is the signature of the group action.
Authors:
Knowl status:
- Review status: reviewed
- Last edited by Andrew Sutherland on 2018-06-29 20:50:17
Referred to by:
History:
(expand/hide all)
Differences
(show/hide)
- curve.highergenus.aut.dimension
- dq.curve.highergenus.aut.label
- dq.curve.highergenus.aut.source
- lmfdb/higher_genus_w_automorphisms/templates/hgcwa-index.html (line 90)
- lmfdb/higher_genus_w_automorphisms/templates/hgcwa-search.html (line 21)
- lmfdb/higher_genus_w_automorphisms/templates/hgcwa-search.html (line 146)
- lmfdb/higher_genus_w_automorphisms/templates/hgcwa-show-family.html (line 22)
- lmfdb/higher_genus_w_automorphisms/templates/hgcwa-show-passport.html (line 17)