Let $G$ be a group of automorphisms acting on a compact Riemann surface $X$ of genus $g$, let $(s_1, \ldots, s_n)$ be a generating vector for the action of $G$ on $X$, and let $\mathcal{C}=(C_1, \ldots, C_n)$ be the corresponding vector of conjugacy classes of $G$.
The tuple $(g,G,\mathcal{C})$ is called a refined passport (some authors say that $X$ is of ramification type $(g,G,\mathcal{C})$).
Authors:
Knowl status:
- Review status: reviewed
- Last edited by Andrew Sutherland on 2018-06-21 22:51:49
Referred to by:
History:
(expand/hide all)
- dq.curve.highergenus.aut.label
- lmfdb/higher_genus_w_automorphisms/templates/hgcwa-index.html (line 19)
- lmfdb/higher_genus_w_automorphisms/templates/hgcwa-show-family.html (line 35)
- lmfdb/higher_genus_w_automorphisms/templates/hgcwa-show-passport.html (line 21)
- lmfdb/higher_genus_w_automorphisms/templates/hgcwa-show-passport.html (line 58)
- lmfdb/higher_genus_w_automorphisms/templates/hgcwa-show-passport.html (lines 72-75)
- lmfdb/higher_genus_w_automorphisms/templates/hgcwa-stats.html (line 24)
- 2018-06-21 22:51:49 by Andrew Sutherland (Reviewed)