Let \(M_k(N,\chi)\) be the space of modular forms of weight $k$, level $N$, and character $\chi$.
If $M$ is a proper divisor of $N$ and $\psi$ is a Dirichlet character of modulus $M$ that induces $\chi$, then for every divisor $D \mid (N/M)$, there is a map from $M_k(M,\psi)$ to $S_k(N,\chi)$ via $f(z) \mapsto f(Dz)$. Such modular forms are said to be old, and together they span a subspace $M_k^{\rm old}(N,\chi) \subseteq M_k(N,\chi)$.
The orthogonal complement of the $M_k^{\rm old}(N,\chi)$ in $M_k(N,\chi)$ with respect to the Petersson scalar product is denoted $M_k^{\rm new}(N,\chi)$, and we have the decomposition \[ M_k(N,\chi)=M_k^{\rm old}(N,\chi)\oplus M_k^{\rm new}(N,\chi). \]
Restricting to cusp forms gives a corresponding decomposition into old forms and new forms \[ S_k(N,\chi)=S_k^{\rm old}(N,\chi)\oplus S_k^{\rm new}(N,\chi). \]
A newform is a cusp form $f\in S_k^{\rm new}(N,\chi)$ that is also an eigenform of all Hecke operators, normalized so that the $q$-expansion $f(z)=\sum a_n q^n$, where $q=e^{2\pi i z}$, begins with the coefficient $a_1=1$. The newforms are a standard basis for the vector space $S_k^{\rm new}(N,\chi)$.
- Review status: reviewed
- Last edited by David Farmer on 2019-04-28 17:59:41
- cmf.1.250.a.a.bottom
- cmf.11.2.a.a.top
- cmf.124.1.i.a.top
- cmf.148.1.f.a.top
- cmf.1600.1.bd.bottom
- cmf.23.2.a.a.top
- cmf.3311.1.h.bottom
- cmf.3600.1.e.a.bottom
- cmf.39.1.d.a.top
- cmf.633.1.m.b.top
- cmf.983.2.c.a.bottom
- cmf.analytic_conductor
- cmf.artin_field
- cmf.artin_image
- cmf.atkin_lehner_dims
- cmf.coefficient_ring
- cmf.decomposition.new.gamma0chi
- cmf.decomposition.new.gamma1
- cmf.dimension
- cmf.distinguishing_primes
- cmf.dualform
- cmf.embedding_format
- cmf.galois_conjugate
- cmf.galois_orbit
- cmf.galois_representation
- cmf.hecke_kernels
- cmf.hecke_operator
- cmf.hecke_ring_generators
- cmf.heckecharpolys
- cmf.include_all_spaces
- cmf.inner_twist
- cmf.inner_twist_count
- cmf.inner_twist_group
- cmf.inner_twist_multiplicity
- cmf.inner_twist_proved
- cmf.label
- cmf.lfunction
- cmf.maximal
- cmf.minimal_twist
- cmf.newform_subspace
- cmf.newspace
- cmf.newspaces
- cmf.picture_description
- cmf.projective_field
- cmf.projective_image
- cmf.q-expansion
- cmf.relative_dimension
- cmf.satake_parameters
- cmf.sato_tate
- cmf.search_input
- cmf.self_twist
- cmf.self_twist_field
- cmf.selfdual
- cmf.sort_order
- cmf.space
- cmf.space_trace_form
- cmf.stark_unit
- cmf.sturm_bound
- cmf.sturm_bound_gamma1
- cmf.subspaces
- cmf.trace_bound
- cmf.trace_form
- cmf.twist
- cmf.twist_minimal
- columns.gps_gl2zhat_test.dims
- columns.gps_gl2zhat_test.newforms
- ec.q.modular_form
- lfunction.known_degree2
- mf.bianchi.2.0.4.1-34225.3-a.top
- mf.bianchi.base_change
- mf.ellitpic.self_twist
- modcurve.decomposition
- modcurve.newform_level
- modcurve.rank
- portrait.cmf
- rcs.cande.cmf
- rcs.cande.lfunction
- rcs.rigor.cmf
- rcs.rigor.lfunction.modular
- rcs.source.cmf
- rcs.source.lfunction.modular
- lmfdb/classical_modular_forms/main.py (line 1303)
- lmfdb/classical_modular_forms/templates/cmf_browse.html (line 16)
- lmfdb/classical_modular_forms/templates/cmf_full_gamma1_space.html (line 129)
- lmfdb/lfunctions/templates/cuspformGL2.html (line 7)
- 2023-11-18 10:15:58 by John Voight
- 2023-11-18 10:15:42 by John Voight
- 2023-11-18 10:15:04 by John Voight
- 2023-11-18 10:06:02 by John Voight
- 2023-11-18 10:05:52 by John Voight
- 2023-11-18 10:04:53 by John Voight
- 2023-11-18 10:04:13 by John Voight
- 2023-11-18 10:02:14 by John Voight
- 2023-11-18 09:59:09 by John Voight
- 2023-11-18 09:58:13 by John Voight
- 2023-11-18 09:57:42 by John Voight
- 2023-11-18 09:57:29 by John Voight
- 2023-11-18 09:57:20 by John Voight
- 2019-04-28 17:59:41 by David Farmer (Reviewed)
- 2019-04-28 17:59:09 by David Farmer
- 2019-04-09 22:23:25 by David Farmer (Reviewed)
- 2019-04-09 22:21:48 by David Farmer
- 2019-01-31 04:14:57 by Andrew Sutherland