A level of a modular form $f$ is a positive integer $N$ such that $f$ is a modular form on a subgroup $\Gamma$ of $\operatorname{SL}_2(\mathbb{Z})$ that contains the principal congruence subgroup $\Gamma(N)$.
The least such integer $N$ is sometimes referred to as “the level” of $f$.
Authors:
Knowl status:
- Review status: reviewed
- Last edited by David Farmer on 2019-04-09 22:49:53
Referred to by:
History:
(expand/hide all)
Differences
(show/hide)
- cmf
- cmf.atkin_lehner_dims
- cmf.bad_prime
- cmf.eisenstein
- cmf.embedding_format
- cmf.embedding_label
- cmf.hecke_operator
- cmf.hecke_orbit
- cmf.label
- cmf.newform
- cmf.newform_subspace
- cmf.newspace
- cmf.newspaces
- cmf.nk2
- cmf.oldspace
- cmf.satake_parameters
- cmf.self_twist
- cmf.sort_order
- cmf.sturm_bound
- cmf.sturm_bound_gamma1
- cmf.subspaces
- mf.ellitpic.self_twist
- mf.half_integral_weight
- mf.half_integral_weight.dedekind_eta
- mf.half_integral_weight.theta
- rcs.cande.cmf
- rcs.rigor.cmf
- rcs.source.cmf
- lmfdb/classical_modular_forms/main.py (line 1137)
- lmfdb/classical_modular_forms/main.py (line 1162)
- lmfdb/classical_modular_forms/templates/cmf_browse.html (line 26)
- lmfdb/classical_modular_forms/templates/cmf_browse.html (line 56)
- lmfdb/classical_modular_forms/templates/cmf_browse.html (line 94)
- lmfdb/classical_modular_forms/templates/cmf_full_gamma1_space.html (line 9)
- lmfdb/classical_modular_forms/templates/cmf_newform_common.html (line 12)
- lmfdb/classical_modular_forms/templates/cmf_refine_search.html (line 29)
- lmfdb/classical_modular_forms/templates/cmf_space.html (line 9)
- lmfdb/classical_modular_forms/templates/cmf_space_refine_search.html (line 17)
- lmfdb/hecke_algebras/hecke_algebras_stats.py (line 12)
- lmfdb/hecke_algebras/templates/hecke_algebras-index.html (line 29)
- lmfdb/hecke_algebras/templates/hecke_algebras-index.html (line 68)
- lmfdb/hecke_algebras/templates/hecke_algebras-search.html (line 9)
- lmfdb/hecke_algebras/templates/hecke_algebras-search.html (line 44)
- lmfdb/hecke_algebras/templates/hecke_algebras-search.html (line 58)
- lmfdb/hecke_algebras/templates/hecke_algebras-single.html (line 11)
- lmfdb/hecke_algebras/templates/hecke_algebras_l_adic-single.html (line 6)