A level of a modular form $f$ is a positive integer $N$ such that $f$ is a modular form on a subgroup $\Gamma$ of $\operatorname{SL}_2(\mathbb{Z})$ that contains the principal congruence subgroup $\Gamma(N)$.
The level of a newform is the least such integer $N$.
Authors:
Knowl status:
- Review status: reviewed
- Last edited by Andrew Sutherland on 2022-03-24 23:00:58
Referred to by:
History:
(expand/hide all)
- cmf
- cmf.11.2.a.a.top
- cmf.3311.1.h.bottom
- cmf.atkin_lehner_dims
- cmf.bad_prime
- cmf.eisenstein
- cmf.embedding_format
- cmf.embedding_label
- cmf.hecke_operator
- cmf.hecke_orbit
- cmf.label
- cmf.minimal_twist
- cmf.newform
- cmf.newform_subspace
- cmf.newspace
- cmf.newspaces
- cmf.nk2
- cmf.oldspace
- cmf.satake_parameters
- cmf.self_twist
- cmf.sort_order
- cmf.sturm_bound
- cmf.sturm_bound_gamma1
- cmf.subspaces
- cmf.twist_minimal
- dq.ec.reliability
- mf.ellitpic.self_twist
- mf.half_integral_weight
- mf.half_integral_weight.dedekind_eta
- mf.half_integral_weight.theta
- modcurve.newform_level
- rcs.cande.cmf
- rcs.rigor.cmf
- rcs.rigor.ec.q
- rcs.source.cmf
- lmfdb/classical_modular_forms/main.py (line 819)
- lmfdb/classical_modular_forms/main.py (line 1306)
- lmfdb/classical_modular_forms/main.py (line 1330)
- lmfdb/classical_modular_forms/main.py (line 1474)
- lmfdb/classical_modular_forms/templates/cmf_browse.html (line 23)
- lmfdb/classical_modular_forms/templates/cmf_browse.html (line 39)
- lmfdb/classical_modular_forms/templates/cmf_full_gamma1_space.html (line 9)
- lmfdb/classical_modular_forms/templates/cmf_newform_common.html (line 14)
- lmfdb/classical_modular_forms/templates/cmf_space.html (line 9)
- lmfdb/hecke_algebras/hecke_algebras_stats.py (line 11)
- lmfdb/hecke_algebras/templates/hecke_algebras-index.html (line 29)
- lmfdb/hecke_algebras/templates/hecke_algebras-index.html (line 68)
- lmfdb/hecke_algebras/templates/hecke_algebras-search.html (line 9)
- lmfdb/hecke_algebras/templates/hecke_algebras-search.html (line 44)
- lmfdb/hecke_algebras/templates/hecke_algebras-search.html (line 58)
- lmfdb/hecke_algebras/templates/hecke_algebras-single.html (line 11)
- lmfdb/hecke_algebras/templates/hecke_algebras_l_adic-single.html (line 6)
- 2022-03-24 23:00:58 by Andrew Sutherland (Reviewed)
- 2022-03-24 22:59:00 by Andrew Sutherland
- 2019-04-09 22:49:53 by David Farmer (Reviewed)
- 2018-12-13 14:20:54 by Alex J. Best