A Dirichlet character $\chi$ is primitive if its conductor is equal to its modulus; equivalently, $\chi$ is not induced by a Dirichlet character of smaller modulus.
Knowl status:
- Review status: reviewed
- Last edited by Pascal Molin on 2019-04-30 12:03:06
Referred to by:
History:
(expand/hide all)
- character.dirichlet
- character.dirichlet.basic_properties
- character.dirichlet.induce
- cmf.inner_twist
- cmf.inner_twist_group
- cmf.inner_twist_proved
- cmf.oldspace
- cmf.self_twist
- cmf.twist
- cmf.twist_multiplicity
- mf.ellitpic.self_twist
- rcs.cande.lfunction
- lmfdb/characters/templates/CharGroup.html (line 49)
- lmfdb/characters/templates/Character.html (line 36)
- lmfdb/characters/templates/Character.html (line 69)
- lmfdb/characters/templates/CharacterNavigate.html (line 77)
- lmfdb/characters/templates/character_search_results.html (line 15)
- lmfdb/characters/templates/character_search_results.html (line 80)
- lmfdb/classical_modular_forms/templates/cmf_browse.html (line 151)
- lmfdb/classical_modular_forms/templates/cmf_refine_search.html (line 82)
- lmfdb/classical_modular_forms/templates/cmf_space_refine_search.html (line 75)
- lmfdb/lfunctions/templates/Degree1.html (line 18)
- 2019-04-30 12:03:06 by Pascal Molin (Reviewed)
- 2018-07-04 21:44:06 by Alina Bucur (Reviewed)