A Dirichlet character is a function $\chi: \mathbb Z\to \mathbb C$ together with a positive integer $q$, called the modulus of the character, such that $\chi$ is completely multiplicative, i.e. $\chi(mn)=\chi(m)\chi(n)$ for all integers $m$ and $n$, and $\chi$ is periodic modulo $q$, i.e. $\chi(n+q)=\chi(n)$ for all $n$. If $(n,q)>1$ then $\chi(n)=0$, whereas if $(n,q)=1$, then $\chi(n)$ is a root of unity.
Authors:
Knowl status:
- Review status: reviewed
- Last edited by John Jones on 2012-06-26 14:36:51
Referred to by:
History:
(expand/hide all)
- character.dirichlet.basic_properties
- character.dirichlet.conrey.index
- character.dirichlet.galois_orbit
- character.dirichlet.galois_orbit_index
- character.dirichlet.group
- character.dirichlet.group.generators
- character.dirichlet.group.order
- character.dirichlet.group.structure
- character.dirichlet.induce
- character.dirichlet.minimal
- character.dirichlet.order
- character.dirichlet.primitive
- character.dirichlet.principal
- character.dirichlet.related_fields
- character.dirichlet.values
- character.dirichlet.values_on_gens
- character.unit_group
- columns.char_dirichlet.modulus
- columns.char_orbits.modulus
- dq.character.dirichlet.extent
- rcs.cande.character.dirichlet
- lmfdb/characters/main.py (line 90)
- lmfdb/characters/main.py (line 244)
- lmfdb/characters/main.py (line 731)
- lmfdb/characters/main.py (line 759)
- lmfdb/characters/main.py (line 770)
- lmfdb/characters/templates/CharacterCommon.html (line 29)
- lmfdb/characters/templates/CharacterNavigate.html (line 14)
- lmfdb/characters/templates/CharacterNavigate.html (line 42)
- lmfdb/characters/templates/CharacterTable.html (line 47)
- lmfdb/characters/templates/ModulusList.html (line 91)
- 2012-06-26 14:36:51 by John Jones (Reviewed)